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Abstract: A sum-over-states perturbation theory is combined with density functional methodology (SOS-DFPT) and 
is applied to NMR shielding tensor calculations. Individual gauges for localized orbitals (IGLO) were used. Different 
types of approximations for the energy difference of the ground and "excited" states are compared. The calculations 
were carried out using a modified version of the deMon program. The results of NMR shielding tensor calculations 
using SOS-DFPT are in good agreement with those of the best post-Hartree-Fock approaches and also with experimental 
data. Results are presented for a number of organic and inorganic compounds (including transition metal complexes) 
and for a model dipeptide. 

1. Introduction 

As mentioned in our previous papers,1"2 the list of publications 
concerning NMR shielding constant calculations in the framework 
of density functional theory (DFT), starting with the works of 
Bieger et al.3 and Freier et al.,3 is not very long.1-4 Two of the 
most important reasons for this situation are connected with the 
relatively short history of DFT. First, highly developed software 
based on DFT (such programs as deMon,5 DMoI,6 ADF,1 

DGauss,* and NUMOL9) appeared significantly later than those 
based on Hartree-Fock (HF) theory. Second, there is no well-
developed DFT perturbation theory suitable for practical ap­
plications to chemical shift calculations. In DFT, there are two 
conventional approaches for calculations of second-order prop­
erties: finite perturbation theory (FPT)10 and response theory.1' 
For NMR calculations, both of them require an energy expression 
for a system in the presence of an infinitesimal perturbing magnetic 
field. This means that one should develop a good approximation 
for the exchange-correlation functional as a functional of the 
density and current density (or density matrix).12 The approach 
presented by Vignale et al.12 and amplified recently by Colwell 
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and Handy12 would seem to require very time-consuming 
calculations and therefore does not seem suitable for practical 
applications to the complex systems we have in mind. As a 
consequence, in the first publications 1^4 the calculations were 
limited to uncoupled DFT response theory. 

In our previous publication,2 we were able to go, for the first 
time, beyond the uncoupled DFT using a rather rough model for 
the response of the exchange-correlation potential to an external 
magnetic field. In this approach, a model of the magnetic field 
linear response was built up directly, without recourse to a model 
of the exchange-correlation energy as a functional of the density 
and current density (or density matrix). 

The model gives significantly improved results for shielding 
constant calculations compared to the uncoupled DFT approach 
and leads to good agreement with the best post-HF approaches 
and also with experimental data. This approach also allows us 
to understand better the physical meaning of the perturbation 
due to the magnetic field in the framework of DFT. On the other 
hand, our first approach2 has some shortcomings, the most serious 
one being the absence of "rotational invariance" of our model 
potential. This arises from the nonlinear dependence of the 
potential constructed from perturbed molecular orbitals (MO).2 

Although this effect is not very strong (about 3-5 ppm for such 
molecules as F2 and H2CO, for which our potential produced the 
most significant contributions), it noticeably restricts the field of 
possible applications. 

In the present paper, different approximations in sum-over­
states perturbation theory combined with density functional 
methodology (here, we go outside the conventional Kohn-Sham1 • 
method) (SOS-DFPT) are presented. The approaches are 
"rotationally invariant" and lead to a very efficient procedure for 
NMR shielding tensor calculations taking into account effects 
of electron correlation. The timing of this approach has an 0(N3) 
dependence on the number of basis functions instead of 0(N5) 
for the MP2 approach (the fastest conventional post-HF method). 
The results of NMR shielding tensor calculations for a number 
of organic and inorganic compounds (including transition metal 
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complexes) and for a model dipeptide are presented. These initial 
tests are extremely encouraging. The new method even handles 
cases where the HF approximation works poorly and, hence, very 
extensive and expensive correlation methods must be used. The 
combination of accurate chemical shifts with DFTs ability to 
handle large complex systems throughout the periodic table should 
have a very significant impact in several subdisciplines of 
chemistry. 

2. Method 

Consider a system in the presence of an infinitesimal perturbing 
external magnetic field B. To describe the system, we will combine 
the sum-over-states perturbation theory with density functional 
methodology. Since a magnetic field produces a purely imaginary 
first-order perturbation, the first-order correction to the many-
electron wave function 

W$H\BU)\*K) 

*0(BU) = *° + « „ £ — *J + ... (D 

will be purely imaginary as well. Here Hl(Bu) is a perturbation 
operator and u = {x,̂ ,z}. Hereafter the superscript 0 (°) 
corresponds to zero-order (unperturbed) functions and operators, 
superscript 1 (') to first-order, and double prime (") to second-
order terms with respect to B; subscript K refers to the "IC state 
of the whole system, subscripts a and b to virtual and i, j , and 
k to occupied MOs; atomic units are used. Note that only "singlet-
singlet" excitations enter into the theory of shielding tensor 
calculations. Equation 1 is a formally exact sum-over-states 
expression whose numerators and denominators must be estimated 
before it can be used for practical calculations. 

If one is going to use a sum-over-states perturbation theory 
along with DFT, there are two central questions: how to find the 
many-electron wave functions for the ground and excited states 
and the corresponding total energies. In the framework of the 
Kohn^Sham (KS) method the many-electron wave function is 
not needed. Instead of it there is an exact ground-state many-
electron wave function for the noninteracting reference system 
defined as the Slater determinant built from the occupied KS 
molecular orbitals (MO).11 Though it is only an approximation 
to the exact many-electron wave function of the real system, it 
seems to be a reasonable one especially if one is only interested 
in calculations of one-electron matrix elements (in the case of a 
local multiplicative operator, such approximation yields the exact 
values of matrix elements). For this reason./atrte de mieux, we 
will use this approximation for the ground-state many-electron 
wave function and, in the end, judge the wisdom of the ansatz 
by the quality of the results obtained. 

The ground-state KS total energy is well defined as a functional 
of the total density of the system. Stepping outside the 
conventional KS method, we will approximate the many-electron 
wave function of an excited state corresponding to the transition 
of an electron from the occupied MO "k" into the virtual MO "a" 
by a Slater determinant that differs from the determinant of the 
ground state by replacing the occupied MO "k" by the virtual 
MO "a". Following this, the remaining problem is to approximate 
the total energy corresponding to this wave function. 

At first sight a natural way might be to estimate this energy 
using the general expression for the total energy in DFT11 as a 
functional of the densities 

and 

P*-n> = P- Pk + Pa 

P^a = P^-Pk +Pa 

(2) 
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(where p* = ^*V*> pf = I*00/5*' an<* P = P^ + P*) in the form 

i W p ^ p ' l = r , [ p ^ ] + / [P^ 0 ] + E J P \ ^ ] + 

JiKr) P^„(r) dr (4) 

(the definitions of T„ J, EK, and v are conventional11). When 
used in a self-consistent variational treatment, eq 4 works 
reasonably well for real excitation energies in many cases;13 but 
we are not seeking a self-consistent variational perturbation theory 
but, rather, a simple sum-over-states approach, and in this case 
eq 4 may not be appropriate. In any event we will propose 
simplifications involving KS orbital energy differences along with 
Coulomb and exchange-correlation contributions derived from 
comparisons with other orbital-based techniques, as outlined 
below. One must realize that the question of treating excited 
states within DFT is an open one, as is the interpretation of the 
KS orbital excitations and orbital energy differences implicit in 
eq 4. We develop our approach with reference to concepts from 
both DFT and wave function methods. 

In doing so, it is pertinent to realize that the exact exchange-
correlation functional has a particle-number derivative discon­
tinuity (Perdew and Levy14). 

«£. 
Sp{t) 
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N-O* = ^xc( r) N+0* ~ ^xc( r) /V-O+ _ ^- (') 

The approximate exchange-correlation operators used in practical 
implementations of DFT do not show this derivative discontinuity. 
In fact, the failure to take proper account of this fact is at the 
heart of the famous "gap" problem14'15 and is also important for 
problems, such as the present one, which involve energy differ­
ences. In particular, eq 4 is inappropriate for the non-self-
consistent calculation of the energy of the excited states which 
is necessary in the sum-over-states perturbation theory. 

This problem and a way to avoid it are discussed in Appendix 
1, where extended Kohn-Sham (EKS) equations are formulated 
and, on their basis, an approximation for the energy difference 

_A£,*-»« = Eo ~ Ek-*a (6) 

suitable for practical applications is obtained. The reader 
interested in more details is referred to Appendix 1. We postpone 
the discussion of this approximation until one further approxima­
tion is introduced on the basis of physical reasoning and noting 
an analogy between DFT and the improved virtual orbitals (IVO) 
approach developed by Hunt and Goddard16 and Huzinaga and 
Arnau.17 

The evaluation of the energy difference between the ground 
and the singlet excited state "fc -* a" in HF theory leads to the 
following expression: 

-A£^ f l = ek , + Jak - 2Kttk (7) 

where Jak and Kak are tHe Coulomb and exchange integrals. Here 
the term Jak is connected with the fact that, in HF theory, the 
virtual MOs are in the field of iV electrons and one should shift 
down the MO "a" for the appropriate description of the excited 
state "k —• a". The small (in comparison with Jak) term Kak 
describes the difference in the exchange interaction between the 
ground and excited states. If one uses the conventional KS 
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approach with a local exchange-correlation operator, virtual MOs 
are in the field of N-1 electrons (because this operator acts the 
same way on the occupied MOs and on the virtual MOs). From 
this point of view DFT bears a closer resemblance to the IVO 
approach16-17 than to HF theory. The IVO method was introduced 
for a proper description of the excited states and as a basis for 
a perturbation theory which is better than that provided by HF.1819 

This means that the LUMO of the conventional KS approach 
with a local exchange-correlation operator is more appropriately 
associated with the lowest excited state of the neutral system 
rather than describing the electron affinity of the system. The 
use of the Coulomb operator J* 

Pk^i) 

* M2 
(8) 

as a shift operator for virtual MOs in the IVO approach leads 
to the usual expression16'17 

* £ * - - - « * - « . ' K<ik T ^ak (9) 

where the upper (lower) sign refers to the "singlet-singlet" 
("singlet-triplet") transition. (See also Appendix 1.) Equations 
8 and 9 and the fact that the exchange term 2Kak is usually 
smaller than the Coulomb integral Jak explain why our "un­
coupled" DFT approach1 (or zero-order approximation) where 
only the difference e* - ea is present leads to remarkably good 
results for many molecules, whereas uncoupled HF does not. The 
"uncoupled" DFT approach fails to account for the exchange 
effects needed to distinguish between "singlet-singlet" and 
"singlet-triplet" transition. These effects become important for 
systems with small HOMO-LUMO gaps. That is probably why 
"uncoupled" DFT gives poor results for such systems. 

One can take the change of the exchange-correlation energy 
into consideration by developing a reasonable approximation for 
the exchange-correlation term in AEk~a: 

-AE1^ me e -&g» *—a (10) 

The last term represents only a part of the change of the exchange-
correlation contribution, which is also present in the difference 
(e* - *«) through the vK terms: 

OCC 

ek = hk + J^n1J1, + J1B10[PVlP* <*r (11) 

I 

OCC 

e. = K + ^n1J10 + JvJp V K dr (12) 

Moreover, the total energy is related to the orbital energies by 

£ = Y> t-(l/2)J7 dr,dr2 + 

f M r 1 ) -o„(r,)] P(F1Hr1 (13) 

where «„ is the exchange-correlation energy density. In our 
previous paper2 it was noted that the change of the exchange-
correlation energy is connected with the formation of a hole in 
MO "fc" and therefore with the resulting change of exchange-
correlation interaction with an electron-transferred into MO "a". 
Following this idea we recognize AJS1

1̂, as the part of the energy 
of interaction of [eM - D10] involving the hole in MO "k" and the 
particle in MO "a". We will use the ratio of the density of MO 
"k* to the whole density (with the same spin) 

(18) Birnstock, F.; Kiapper, D. Chem. Phys. Lett. 1973, 20, 542. 
(19) Nakatsuji, H. / . Chem. Phys. 1974, 61, 3728. 

, , P*« 

PT(r) 
(14) 

as a factor locally characterizing a part of a functional of the 
density corresponding to MO "fc" (as we did in our previous 
paper2). It is interesting to note that the same parameter appears 
in a Taylor expansion of a functional of the density in powers of 
Pk (see refs 20-22). We expect that this approximation is good 
enough for our purposes because the sum of the contributions 
from all occupied MOs produces exactly the functional and if at 
any point the density p* is equal to the density p*, then 7*(r) is 
equal to 1, and therefore the value of the functional of pf coincides 
(in the LDA case) with the value of the functional of p* at that 
point. 

With this physical picture as the background motivation, we 
introduce the simple ansatz 

AEIt1, = J ^ K c M - M r ) ] P.(r) dr (15) 
P (r) 

which we call approximation 1. In the case of the exchange-only 
local-density approximation" we get a very simple expression for 
A££.a> 

A £ £ . = (l/3)CxJV(r) (-2 /3 ) P*(r) pa(r) dr (16) 

Cx = (3/2X3/41T)1/3 (17) 

which we call approximation Loc.l. This approach leads to 
rotationally-invariant results for NMR shielding tensor calcula­
tions and has another advantage which will be discussed below. 

The calculation of the shielding tensor using eq 15 involves a 
straightforward sum-over-states and does not require any iterative 
procedure. The whole list of working equations is presented in 
Appendix 2. 

Up to this point we have constructed the approximation for 
AE\^a starting from its physical meaning. The EKS equations 
can be used to derive another approximation (approximation 2), 

- ^ * - . " « * - « . + / • 
to«[pV] 

Sp 
PkPa d r (18) 

described in Appendix 1. 
Using the local-density approximation one can derive the 

following expression (in the "exchange only" case11) for the term 
A£j£.a (approximation Loc.2): 

A£*Aa = (4/9)C,JV(r)<"2/3) p,(r) p.(r) dr (19) 

The right side of eq 19 differs from approximation Loc.l (eq 16) 
only by the coefficient V3. On the one hand this is not a very 
big difference, but on the other hand in both cases approximations 
were used and therefore it is difficult to say a priori which 
coefficient is better. It might seem that the second approach (eq 
18 and 19) is more rigorous than the first one, but it includes a 
Taylor expansion and we have taken only the first term depending 
on pa and p*. The next term in this expansion has the opposite 
sign, the parameter 7*(r) is not always small enough, and the 
expansion may not converge quickly. Therefore the question 
about the best coefficient (4/3 or 1) is still open. We have tried 
both approaches, and the results of these calculations are presented 
in the next section. 
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If one takes into account nonlocal exchange-correlation effects 
(going beyond the local-density approximation), the expressions 
for the first and second approaches seem rather different. 
Nevertheless, keeping in mind that the local exchange term is 
usually the most important part of the exchange-correlation 
energy, one expects that the difference between these two 
approaches should not be large even in this case. From the 
computational point of view a nonlocal approach based on our 
first model (eq 15) and referred to hereafter as approximation 
N-Loc. 1 has a big advantage because there is no need to calculate 
any derivatives of eK and pM in this case. Therefore this approach 
does not depend on any particular model of the exchange-
correlation potential implemented in the code. Moreover, in this 
case there is no need to calculate any new values on the grid used 
for numerical evaluation of the matrix elements A£j^a because 
the values of «xc and vxc have already been calculated during the 
calculation of the exchange-correlation potential and energy. 
Therefore, when taking into account nonlocal effects, the first 
approach is less time-consuming and simpler to implement. We 
will continue the comparison of these approaches in the next 
section. 

3. Results 

3.1. Computational Details. AU the calculations have been 
carried out using a modified version of the deMon program.5 In 
order to obtain more precise molecular orbital coefficients and 
one-electron energies after reaching the convergence during the 
SCF iterations, one extra iteration without fitting of the exchange-
correlation potential and using an enlarged grid was performed. 
Unless noted otherwise, the Perdew-Wang-91 (P W91) exchange-
correlation potential23 and the approximation Loc. 1 SOS-DFPT 
(see section entitled Method) were used. For most of the 
calculations the basis sets IGLO-II and IGLO-III of Kutzelnigg 
et al.24 were used. (We used the same contraction scheme and 
exponents as for basis sets IGLO-II and IGLO-III,24 but did not 
remove the s-type linear combinations of dxx, dyy, and d„ from 
our basis as was done in the IGLO program.) For vanadium we 
used a slightly uncontracted (contraction (621321/41211*/ 
2111+) instead of (63321/5211*/41+)) deMon standard basis 
set.5 The occupied MOs were localized by the method of Foster 
and Boys.25 Unless noted otherwise, we use the experimental 
molecular geometries.26 

Since, besides the new approximations for A£*-.a introduced 
in this paper, we also used a modified version of the deMon code5 

and the new exchange-correlation potential (PW91 )23 (compared 
with our previous papers1-2), we would like to discuss first the 
influence of these changes on our results. One of the central 
points in the gaussian DFT technique is the fit of the exchange-
correlation potential5 at every SCF iteration using a relatively 
small grid. This reduces the computational time but leads to a 
dependence of the accuracy of the results on the quality of the 
fitting basis set and grid. Therefore we choose a compromise 
solution: after convergence is reached, we perform one additional 
SCF iteration without the fit of the exchange-correlation potential 
and calculate the corresponding matrix elements numerically using 
an enlarged grid. Thus we obtain more precise MO coefficients 
and one-electron energies with a relatively small computational 
effort. 
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and Progress: Springer-Verlag: Heidelberg, 1990; Vol. 23, p 165. 

(25) Foster, S.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 303. 
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ref 43 for NH3; ref 44 for H2O, C2H2, C2H4, H2CO, CH3F, and H2O2 (6-
31G* geometry); ref 45 for HF, N2, F2, CO, and PN; ref 46 for CHF3; ref 
47 for C3H8; and ref 48 for P2H2. 

Table 1. Influence of the Grid and Exchange-Correlation Potential 
on Shielding Constant Calculations" 

molecule 

PN 

CO 

F2 

N2 
H2CO 

PN 

CO 

F2 

N2 
H2CO 

nucleus 

P 
N 
C 
O 
F 

N 
C 
O 

P 
N 
C 
O 
F 

N 
C 
O 

off 

BP PW91 

on 

BP 

Zero-Order Approximation 
-2.3 

-393.4 
-7.3 

-72.3 
-247.1 

-78.9 
-27.2 

-459.2 

-4.9 
-384.9 

-5.1 
-74.6 

-223.4 

i 

-74.9 
-20.6 

-453.5 

3.4 
-392.4 

-8.6 
-66.5 

-257.5 

-75.6 
-24.2 

-440.4 
Loc.l Approximation 

49.7 
-349.7 

7.7 
-49.4 

-204.8 

-62.5 
-17.7 

-409.7 

47.8 
-341.4 

9.8 
-51.2 

-183.6 

-58.6 
-11.5 

-404.7 

55.1 
-348.8 

6.4 
-43.8 

-214.0 

-59.5 
-15.0 

-393.1 

PW91 

1.7 
-385.9 

-4.9 
-63.9 

-245.0 

-71.4 
-19.1 

-431.1 

53.8 
-342.7 

9.7 
-41.4 

-202.8 

-55.5 
-10.1 

-384.6 

exptl 

53» 
-349« 
l i l . 2 ' 
-42.3« 
-176/ 
-179/ 
-192.8/ 
-61.6» 
-1±10.1* 
-375±15C 

53» 
-349" 
\±\.2d 

-42.3' 
-176/ 
-179/ 
-192.8/ 
-61.6« 
-lilO.l* 
-37SiIS(V 

" Basis set IGLO-III; on (off) means calculation with (without) "extra" 
iteration. AU data are in parts per million. * Reference 49. c Reference 
30. ' Reference 50. • Reference 51./Reference 52. * Reference 53. 
* Reference 54 . ' Reference 55. 

As one can see from the results of Table 1 this "extra" iteration 
and the improvement of the grid affects the results significantly 
(in Table 1 "on" and "off" mean calculations with and without 
the "extra" iteration, respectively). For the most sensitive 
molecules (F2 and H2CO on the oxygen nucleus) the difference of 
the chemical shifts calculated with and without the "extra" 
iteration is about 20 ppm. All our results presented below are 
obtained using this variant (with the "extra" iteration). 

Our experience shows that the FINE grid option (about 800 
points/atom for the fitting procedure and about 2800 for the 
"extra" iteration) is reasonable for second- and third-row atoms 
(this grid leads to differences of chemical shifts for symmetry-
related nuclei of usually less than 0.2 ppm). We used this grid 
also for the calculations of shielding tensors of selenium and 
vanadium compounds. As will be discussed below, we obtained 
good agreement with experimental data for these compounds, 
but it seems that the grid must be further increased (the radial 
part at least) to reduce the loss of accuracy during the numerical 
integration. This work is in progress. Another possibility to 
keep the symmetry and reduce the computational efforts is to use 
a symmetry-adapted grid.27 

The question about the best exchange-correlation potential for 
NMR calculations is still open. As one can see from the results 
presented in Table 1, the difference of chemical shifts in the F2 
molecule calculated with Becke exchange28 and Perdew correlation 
potentials29 and PW9123 reaches 11 ppm (Loc.l approximation). 
Naturally, basis set convergence is essential when determining 
which potential gives better chemical shifts. Calculations will 
need to be carried out for a range of molecules and the results 
examined for their mean deviation from experiment or high-
quality theoretical calculations. Up to now this work is not finished 
(we would like to collect more data). Our present impression is 
that PW9123 leads to slightly better results when it is used with 
the basis sets IGLO-II and IGLO-III and the Loc.l approxima­
tion. AU our results presented below are obtained using the P W91 
potential. 

(27) Daul, CA.; Goursot, A.; Salahub, D. R. In NATO ARW Proceedings 
on Numerical Grid Methods and Their Application toSchrodinger's Equation; 
Cerjan, C , Ed.; Kluwer Academic Publishers: Dordrecht, 1993. 

(28) Becke, A. D. Phys. Rev. A 1988, 38, 3098. 
(29) Perdew, J. P. Phys. Rev. B 1986, 33, 8822. 
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Table 2. NMR Shielding Constant Calculations Using the SOS-DFPT-IGLO Approach for Some Small Molecules in Comparison with 
Experimental Data and ab Initio Correlated Calculations of Other Authors' 

molecule 

CH4 

H2O 

NH3 

HF 

N2 

CH3F 

CHF3 

C2H2 

C2H4 

H2CO 

F2 

C3H8 

nucleus 

C 

H 
O 
H 
N 
H 
F 
H 
N 

C 
F 
H 
C 
F 
H 
C 
H 
C 
H 
C 
O 
H 
F 

Cl 
C2 
H(Cl) 
H(C2) 

zero 

193.9 

31.1 
304.0 

31.1 
245.5 

31.1 
393.0 

30.3 
-71.9 

113.3 
425.2 

26.8 
61.5 

251.4 
24.2 

118.8 
29.3 
60.3 
25.6 
-7.3 

-427.4 
21.2 

-230.1 

170.5 
166.6 
30.4 
29.9 

1 
Loc.l 

195.4 

31.1 
307.3 

31.1 
248.0 

31.1 
396.1 

30.2 
-54.4 

115.4 
426.4 

26.9 
63.3 

254.6 
24.2 

121.3 
29.3 
64.5 
25.7 

1.6 
-380.2 

21.6 
-187.5 

171.3 
167.5 
30.4 
29.9 

DFT 
basis II 

N-Loc.l 

195.2 

31.1 
306.7 

31.1 
247.6 

31.1 
395.1 

30.3 
-56.6 

115.0 
426.1 

26.9 
63.0 

253.9 
24.2 

120.8 
29.3 
63.8 
25.7 
0.5 

-385.1 
21.5 

-190.7 

171.2 
167.4 
30.4 
29.9 

Loc.2 

195.8 

31.1 
308.4 

31.1 
248.8 

31.1 
397.1 

30.2 
-49.0 

116.1 
426.8 

26.9 
64.0 

255.6 
24.2 

122.0 
29.2 
65.9 
25.8 
4.3 

-365.8 
21.7 

-174.4 

171.6 
167.8 
30.4 
29.9 

basis III 
Loc.l 

191.9 

31.2 
325.6 

31.1 
257.2 

31.2 
410.0 

29.5 
-55.5 

107.9 
448.0 

26.8 
55.0 

249.7 
24.5 

114.5 
29.9 
56.6 
25.7 

-10.1 
-384.6 

21.4 
-202.8 

166.3 
162.3 
30.5 
29.9 

other methods 

198.9« 
194* 
31.2« 
329» 
30.5' 
265* 
31.1' 
410* 
29.2^ 
-40.8rf 

-82.2* 
123« 
448« 

123.y 

71.2/ 

6.7/ 
-345* 

-204.3^ 

exptl 

195.1* 

30.6' 
344.(V 
30.1' 
264.5* 
31.2±1* 
410±6' 
29.2±0.5' 
-61.6™ 

116.8* 
471.0" 
26.6' 
68.4° 
274.1« 
(23.7V 
117.2* 
29.3« 
64.5* 
25.4« 
-1±10.1' 
-375±15<K 
18.3±2* 
-176» 
-179" 
-192.8" 
170.9» 
169.3» 
29.9' 
29.4' 

" Data in parentheses are liquid-phase values. AU data are in parts per million. * Reference 56.«Reference 57. d Reference 33. ' Reference 32. 
/Reference58. 'Reference59. *Reference50. 'Reference54./Reference51. *Reference60. 'Reference61. "Reference53. "Reference52. "Reference 
62. ' Reference 24 (liquid). « Reference 63.' Reference 55.' Reference 64.' Reference 65. 

All single excitations from occupied to unoccupied orbitals 
were included. Although some economies could undoubtedly be 
achieved in this respect, the computer time for the shift calculations 
is modest, so we have not yet pursued the issue. 

3.2. Small Molecules. For the first test of the present approach 
and comparison of the different approximations of Ai?*-.,, we 
have chosen the same set of molecules as in our previous paper.2 

The results of NMR shielding constant calculations using the 
zero-order, Loc.l, Loc.2, and N-Loc.l approximations and the 
basis sets IGLO-II and IGLO-III are shown in Tables 2 and 3. 
In Table 3 we collected the results obtained with the more extensive 
basis set IGLO-IH for the molecules which are most sensitive to 
going beyond the zero-order approximation. 

For many of these molecules (usually the same where the 
coupled Hartree-Fock (CHF) method also works well) the zero-
order approximation gives good agreement with experimental 
data. This provides evidence that DFT is a good basis for NMR 
calculations even at the level of the zero-order approximation 
("uncoupled" approach). On the other hand, for some molecules 
(see Table 3) the use of more accurate approximations for A£*—a 
is necessary. 

The approximation of N-Loc.l leads to small changes of the 
results (to deshielding effects on non-hydrogen nuclei) in 
comparison with Loc. 1. Usually the difference is about 1 ppm, 
and for the most sensitive molecules it is less than 7 ppm, that 
is, less than the dependence on the quality of the basis set. The 
level of convergence with respect to the basis set quality reached 
in our calculations and the absence of reliable reference data 
(experimental or calculated by ab initio correlated approaches) 
is not enough to decide how important the nonlocal corrections 
are in approximation 1 for calculations of A£*-.a. 

As a rule the Loc.l approach gives better results than Loc.2 
(see Table 3), because Loc.2 seems to overestimate shielding 

effects. Up to now we have not tried to include nonlocal corrections 
in approximation 2 for calculations of &Ek-~a because their 
inclusion requires the calculation of the derivatives of the 
exchange-correlation potential which in turn leads to complication 
of the code and an increase of the computational time. On the 
basis of the comparison of Loc.l and N-Loc.l approximations 
one may expect that the inclusion of nonlocal corrections in 
approximation 2 will improve the results due to the increase of 
the deshielding effects. However, for the reasons pointed out 
above, even in this case it would be difficult to decide which 
approach (Loc. 1 or N-Loc.2) yields better results, and since Loc. 1 
is simpler and less time-consuming, we chose this approach for 
further calculations. 

A comparison between shielding constant values calculated 
using zero-order and Loc.l approximations (basis set IGLO-III 
and PW91 exchange-correlation potential23) versus experimental 
ones is presented visually in Figure 1. In this picture we show 
the results for non-hydrogen nuclei in the molecules where the 
difference between these two approximations is significant. The 
use of Loc. 1 brings the results into very pleasing agreement with 
experimental data. (We note that the experimental value of the 
shielding constant in P2H2 is not available and that we followed 
ref 30 in using the experimental data for ArP=PAr, where Ar 
= tris-'err-butylphenyl.31 This may be the reason for the less 
favorable agreement of our result with the experimental one.) 
The whole picture of the agreement between the calculated values 
of shielding constants for non-hydrogen nuclei presented in Tables 
2 and 3 (except for P2H2 and H2O2 where reliable experimental 
data are not available) is presented in Figure 2. The obviously 
good agreement with experimental data indicates that our 

(30) Bouman, T. D.; Hansen, Aa. E. Chem. Phys. Lett. 1990,175, 292. 
(31) ZiIm, K. W.; Webb, G. G.; Cowley, A. H.; Pakulski, M.; Orendt, A. 

/. Am. Chem. Soc. 1988, 110, 2032. 
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Table 3. NMR Shielding Constant Calculations Using the SOS-DFPT-IGLO Approach for Some Small Molecules in Comparison with 
Experimental Data and ab Initio Correlated Calculations of Other Authors" 

DFT, basis III 

molecule 

PN 

P2H2 
CO 

N2O 

N2 

H2O2 
H2CO 

F2 

(basis II) 

nucleus 

P 

N 

P 
C 

O 

Nl 
N2 
O 
N 

O 
C 
O 
F 

F 

zero 

1.7 

-385.9 

-266.4 
-4.9 

-63.9 

96.3 
6.9 

179.9 
-71.4 

152.4 
-19.1 

-431.1 
-245.0 

-230.1 

Loc.l 

53.8 

-342.7 

-195.5 
9.7 

-41.4 

106.9 
14.7 

186.8 
-55.5 

158.8 
-10.1 

-384.6 
-202.8 

-187.5 

Loc.2 

69.5 

-329.7 

-174.6 
14.1 

-34.6 

110.3 
17.2 

189.0 
-50.6 

160.8 
-7.4 

-370.3 
-189.8 

-174.4 

N-Loc.l 

46.9 

-347.8 

-202.2 
7.7 

-44.6 

105.8 
13.9 

185.9 
-58.0 

158.2 
-11.1 

-390.1 
-205.6 

-190.7 

other methods 

121.6* 
1(/ 
-281" 
-341/ 
-291/ 
-21.4» 
13.6' 
-82.8» 
-54.1* 
-38.1' 

192.1* 
-82.2» 
-40.9* 
150.9* 
6.7« 
-345* 
-215.8* 

-201.8* 

exptl 

53* 

-349' 

-166' 
l i l . y 

-42.3* 

99.5* 
11.3* 
200.5* 
-61.6' 

-1±10.1" 
-375±150" 
-176» 
-179» 
-192.8° 

" All data are in parts per million. » Reference 56.c Reference 57. * Reference 33. ' Reference 58. / Reference 30. * Reference 59. * Reference 49. 
' Reference 30. See text. I Reference 50. * Reference 51 . ' Reference 53. m Reference 54. " Reference 55. » Reference 52. 
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Table 4. 13C NMR Shift Tensors in Some Cyclic Organic 
Compounds (Relative to CH4)* 

-300 -200 -100 0 

Experimental (ppm) 

100 

Figure 1. Comparison between shielding constants calculated with zero-
order and the Loc. 1 approximations and experimental data. The asterisk 
indicates the nucleus for which shielding constants were calculated. 

SOS-DFPT results 
(Loc.l; ISLO-III basis) 

600 

method and basis a 
Cyclopropene 

LORG (TZP) 
GIAO (6-3lllG+2d,2p) 
SOS-DFPT-IGLO (II) 
exptl 

IGLO (TZP) 
LORG (TZP) 
GIAO (6-31 HG+2d,2p) 
SOS-DFPT-IGLO (II) 
exptl 

LORG (DZ) 
GIAO (6-31 HG+2d,2p) 
FULL SOLO (TZP) 
SOS-DFPT-IGLO (II) 
exptl (gas) 
exptl (solid) 

-2 
2 

12.7 
3 

V «n 
On-CH2-) 

107 
108 
102.4 
94 

Cyclopropane 
-3 
0 

-1 
7.2 

-4 

55.5 
53 
56 
51.0 
48 

Benzene 
131 
139 
127 
132.5 
137.2 
132 

211 
195 
176 
176.9 

181 

43 
53.5 
40 

25 

26 
33.4 
22 

260 
230 
236.1 

236 

a22 

34 
40.1 
29 

6 

10 
14.9 
2 

148 
141 
146.8 

148 

hi 

-73 
-70 
-55.6 
-59 

-40 
-35 
-38 
-26.8 
-36 

8 
10 
14.6 

11 

-400 
-400 -200 0 200 

Experimental (ppm) 
400 600 

Figure 2. Comparisons between shielding constants calculated with SOS-
DFPT for non-hydrogen nuclei in molecules presented in Tables 2 and 
3 (except P2H2 and H2O2) and experimental data. 

approach is suitable for NMR shielding constant calculations for 
compounds containing the second- and third-row elements, at 
least. 

3.3. Cyclic Organic Compounds. Shift Anisotropy. In the 
previous section, we have considered the applications of our 
approach to small noncyclic molecules. As a next step in the 
validation of our approach, we selected some cyclic organic 
compounds because (1) they have more complicated structures; 

' All data are in parts per million. AU data except FULL SOLO and 
SOS-DFPT-IGLO are taken from ref 66; FULL SOLO: ref 32. 

(2) these compounds are well studied with different ab initio 
methods; and (3) the experimental data are available not only for 
chemical shifts but for shift tensors as well. 

The results of 13C shift tensors for cyclopropene (in the 
methylene group), cyclopropane, and benzene are presented in 
Table 4. At first sight, one can see that our approach gives better 
agreement between the calculated and experimental shift anisotro­
pics compared to CHF or RPA approaches and overestimates 
chemical shifts (see cyclopropene and cyclopropane). However, 
let us look more carefully at the results of calculated chemical 
shifts. As one can see from the results for the benzene molecule, 
the difference between GIAO results and FULL SOLO (which 
takes into account correlation effects) is 12 ppm. Therefore one 
can expect changes of similar magnitude in the values of chemical 
shifts in cyclopropene and cyclopropane when correlation is taken 
into account, which in turn can significantly worsen the agreement 
with experimental data. It seems that often good agreement of 
the results of noncorrelated ab initio methods reflects a fortuitous 
cancellation of the basis set and correlation errors. On the other 
hand the results of the chemical shift between cyclopropene and 
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Table 5. 17O NMR Chemical Shielding! in Ozone" 

DFT DFT 
nucleus SCF-IGLO* MC-IGLO* (zero) (Loc.l) exptl* 

Basis Set IGLO-II 
Oc,,, -2928.6 -662.4 -851.1 -742.3 -724 
0«™ -3054.1 -1190.3 -1429.3 -1229.9 -1290 

Basis Set IGLO-III 
0 « -2794.3 -663.1 -856.1 -753.0 -724 
Oterm -2905.8 -1176.9 -1420.3 -1229.9 -1290 

• AU data are in parts per million. * Reference 33. 

cyclopropane calculated with S O S - D F P T is 5.5, which is close 
to the experimental value, 7 ppm, whereas this shift by L O R G 
is 2 ppm and by G I A O is 3 ppm. 

The discrepancy between our calculated and experimental shift 
tensor components is caused by overestimation of calculated shift 
constants. In order to judge correctly the ability of our approach 
to describe shift tensor components, one should subtract the 
difference between calculated and experimental shift constants 
from the principal components of the tensor. Then we obtain the 
components b\\, S22, and $33 for cyclopropene and cyclopropane 
equal to 43 .8 , 30.4, and - 6 5 . 3 (experimental values are 40 , 29 , 
and - 5 9 ) and 2 2 . 2 , 3 . 7 , and - 3 8 . 0 ppm (experimental values are 
22 , 2 , and - 3 6 ) , respectively, which is in good agreement with 
experiment. 

For benzene the results of F U L L S O L O 3 2 (this approach takes 
into account correlation effects) are also available. It is 
remarkable that our approach and F U L L S O L O produce 
practically the same values of the anisotropy and principal 
components of the shift tensor (using the analogous correction 
connected with the difference in isotropic shifts, 5.5 ppm). A t 
the same t ime the results of our approach and F U L L S O L O 
differ significantly from those obtained by ab initio methods that 
do not take correlation effects into account. The differences 
between isotropic and anisotropic values calculated with G I A O 
and F U L L S O L O are 12 and 19 ppm, respectively. 

The conclusion following from the data of Table 4 is that our 
approach describes cyclic organic compounds very well and gives 
reliable values of the anisotropy and components of the shift 
tensor. The shift anisotropics are more sensitive to correlation 
effects than are chemical shifts. 

3.4. The Ozone Molecule. A well-known example where the 
CHF approach works poorly and where correlation effects are 
very important is the ozone molecule. Therefore we consider this 
molecule as a good test of our approach. The results of SCF-
IGLO (without correlation)33 and multiconfigurational IGLO 
(MC-IGLO)33 and our results with zero-order and Loc.l 
approximations in comparison with experimental data are 
presented in Table 5. In our calculations we used the same 
geometry and practically the same basis sets IGLO-II and IGLO-
III (see description of basis sets in the beginning of the Results 
section) as in the work of Chr. van Wfillen.33 One can see from 
the results in Table 5 that the influence of correlation is extremely 
important for this molecule. The inclusion of the correlation 
effects by MC-IGLO improves the results significantly (the 
difference between SCF-IGLO and MC-IGLO NMR chemical 
shieldings is about 2000 ppm). At the same time DFT even with 
the zero-order approximation gives reasonable agreement with 
experimental data, but the use of Loc.l improves the results 
significantly. We see that even for such a strong correlated system 
our approach works well. 

3.5. Selenium Compounds. In the subsections above, we have 
discussed the application of our approach to compounds containing 
first-, second-, and third-row elements. Now we would like to 
consider compounds containing elements of the next row. Such 

(32) Hansen, Aa. E.; Bouman, T. D. In Nuclear Magnetic Shieldings and 
Molecular Structure; Tossell, J. A., Ed.; Kluwer Academic Publishers: 
Dordrecht, 1993; p 117. 

(33) van WOllen, Chr. Ph.D. Thesis, Ruhr-Universitat, Bochum, 1992. 
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Table 6. 77Se NMR Shielding Constants and Chemical Shifts" 

DFT 

Loc.1 

GIAO* IGLO= zero IGLO-II' 
compd midi-4p2d2 IGLO-II IGLO-II'' IGLO-II'' (unc)« exptl* 

77Se Shielding Constants 
SeH2 
SeHCH3 

Se(CH3)2 

SeH2 
SeHCH3 
Se(CH3J2 

2150.9 
2006.2 
1941.8 

-209.1 
-64.4 

0.0 

2111.6 
1963.6 
1860.6 

2151.5 
1910.4 
1775.5 

2173.4 
1937.0 
1774.6 

77Se Chemical Shifts 
-251.0 
-103.0 

0.0 

^»06.0 
-164.9 

0.0 

-398.8 
-162.4 

0.0 

" All data are in parts per million. * Reference 34. ' Reference 68. 
* Without f-functions.«Uncontracted IGLO-II. 

systems should show the advantages of our approach over H F -
based methods since correlation effects may be included with 
relatively small computational effort. For validation of the 
approach it is very important to have reliable N M R experimental 
data (preferably gas phase) and good geometries. Recently a 
significant paper of Ellis et al. appeared3 4 where the experimental 
N M R results in gas-phase, M P 2 optimized and experimental 
geometries and the results of G I A O calculations for S e H 2 , 
S e H C H 3 , and S e ( C H s ) 2 were presented. 

The authors found relatively poor agreement between experi­
mental and G I A O results. Their results and the results of our 
calculations are presented in Table 6. Zero-order and Loc . l 
approximations lead to close results of chemical shifts which are 
in good agreement with experimental data for both approxima­
tions. 

The effect of decontraction of the IGLO-II basis set is about 
60 ppm for shielding constants and remains practically constant 
for all the compounds considered. W e would like to note that in 
our calculations f-functions (presented in the original IGLO-II 
basis set for Se) were not used. This may be one of the reasons 
for the discrepancy between D F T results and experimental data. 
This may indicate that convergence with respect to the quality 
of the basis set has not yet been reached. On the other hand, as 
we noted above, another possible reason for the discrepancy with 
experimental data is the grid used. However, the present results 
are much closer to experimental data than those of G I A O . 
Analyzing the results of G I A O calculations, the authors of ref 
34 pointed out as a possible reason for the poor agreement between 
theory and experiment the neglect of correlation and/or relativistic 
effects. Pulay3 5 noted that another reason for this discrepancy 
could be the use of an inadequate basis set for G I A O calculation. 
Of course, the importance of large basis sets for chemical shift 
calculations is well-known. Nevertheless , in our opinion, the 
correlation effects also play a significant role for such systems. 
However, we could not est imate the scale of these effects by 
comparing our results with zero-order and Loc. 1 approximations 
because even zero-order D F T calculations take into account 
correlation effects to some extent. In any event, whether the 
problem with the HF-based approaches is due to limitations on 
the size of basis set which can be employed or the neglect of 
correlation, these problems can be largely avoided in S O S - D F P T , 
which takes correlation effects into account and yet has only an 
0 ( N 3 ) dependence of the timing on the number of the basis 
functions. 

After submitting the present paper we became aware of the 
results of I G L O calculations6 8 with the IGLO-II basis set for 
these compounds: - 2 5 1 . 0 , - 1 0 3 . 0 , and 0.0 ppm for S e H 2 , 
S e H C H 3 , and Se (CH 3 J 2 , correspondingly. The results clearly 

(34) Ellis, P. D.; Odom, J. D.; Lipton, A. S.; Chen, Q.; Gulick, J. M. In 
Nuclear Magnetic Shieldings and Molecular Structure, Tossell, J. A., Ed.; 
Kluwer Academic Publishers: Dordrecht, 1993; p 539. 

(35) Discussion after an oral presentation of this work at the 76th CSC 
Conference, Sherbrooke, Canada, 1993. 
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3000 Table 7. 31V NMR Shift Tensor in Solid Metavanadates 
(Relative to VOCIa)" 

1000 2000 

Experimental (ppm) 

3000 

Figure 3. Comparison between5' V chemical shifts calculated with SOS-
DFPT and experimental data. 

demonstrate the importance of the correlation effects for chemical 
shift calculations of Se compounds. 

A comparison of our results with the experimental ones indicates 
that relativistic effects on the chemical shifts are not of overriding 
importance for the systems considered. 

3.6. Vanadium Compounds. Vanadium compounds have an 
extremely wide range of 51V chemical shifts (about 2000 ppm)36 

and therefore are very interesting from a theoretical point of 
view. Moreover, vanadium is a typical first-row transition metal 
element and its compounds play an important role in catalysis 
and have been well studied experimentally. For our calculations 
we chose vanadium compounds for which both experimental 
geometries and NMR data are available. These are VOCI3, VF5, 
V(CO)6", and solid metavanadates LiVO3 and NaVO3. As a 
model of solid metavanadates we used a minimal cluster 
V02(OH)2" which reflects the local geometrical structure of 
solid metavanadates. The geometry of the vanadium-oxygen 
part of the clusters was taken from the experimental X-ray data,37 

and hydrogen atoms were placed at a distance of 0.96 A from the 
bridge oxygen atoms and in the directions to neighboring vanadium 
atoms not included in the clusters. 

We obtained the following values of the 51V chemical shifts 
relative to VOCl3 (for VOCl3 the calculated5 - V shielding constant 
is -1505.4 ppm) (ppm): in VF5, -712.0; V(CO)6-, -1763.3; 
LiVO3, -615.6; and NaVO3, -623.0. These data versus experi­
mental ones36-38 are presented in Figure 3. Analyzing these results 
one should remember that the experiments were done in the solid 
state or in solutions and it is known that gas-liquid and gas-solid 
shifts can be significant. On the whole the picture shows good 
agreement of the calculated values with experimental data. 

Calculating shift tensors in solid metavanadates, we wanted 
to investigate the dependence of the parameters of shift tensors 
(isotropic (chemical) shift 5 = (5-1 + ($22 + <533)/3, shift anisotropy 
A<5 =• S33 - (5n + $22)/2, and asymmetry factor in shift tensor 
jj = (822 - $n)/(533 - 8); here we used the definitions of ref 38) 
on the geometry of the local structural environments of vanadium. 
The results for 8, A8, and J- for metavanadates with different 
cations are collected in Table 7. Keeping in mind that we used 
minimal clusters, we obtained reasonable agreement with 
experimental data for the isotropic shift. This parameter is not 
very sensitive to the actual type of cation involved. We also 
found that the asymmetry factor -7 is basically defined by the 
local structural environments of vanadium and well reproduced 
by our approach. The shift anisotropy A5, however, is very 
sensitive to the type of cation. Since we did not include any 
cations explicitly in our model clusters, it is not surprising that 
we reproduced AS only on the average for these compounds. 

(36) Kidd, R. G.; Goodfellow, R. J. In NMR and Periodic Table; Harris, 
R. K., Mann, B. E., Eds.; Academic Press: New York, 1978;p 195. Howarth, 
O. W. Prog. Nucl. Magn. Resort. Spectrosc. 1990, 22, 453. 

(37) Shannon, R. D.; Calvo, C. Can. J. Chem. 1973, 51, 265. Marumo, 
F.; Isobe, M.; Iwai, S.; Kondo, Y. Acta Crystallogr. B 1974, 30, 1628. 
Hawthorne, F. C; Calvo, C. J. Solid State Chem. 1977, 22, 157. 

(38) Hayashi, S.; Hayamizu, K. Bull. Chem. Soc. Jpn. 1990, 63, 961. 
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Figure 4. A model dipeptide. 

On the whole the SOS-DFFT approach (Loc. 1 approximation) 
leads to reasonable results for vanadium compounds; however, 
further investigations with bigger basis sets, more extensive grids, 
and large model clusters are needed. This work is in progress. 

3.7. A Model Dipeptide. NMR has become a powerful tool 
for the determination of the three-dimensional structure of 
biological systems. Together with the development of the 
experimental techniques there is a growing need for theoretical 
analysis of NMR spectra and direct quantum-chemical calcula­
tions of shielding tensors in different conformations of systems 
of interest. We think our approach is very suitable for these 
purposes and can be used for investigation of the dependence of 
NMR shielding tensors on the geometry of a structure under 
study, to contribute to NMR data banks, and so on. 

As an example of the application of our approach for such 
purposes we present the dependence of calculated shielding 
constants in a model dipeptide (see Figure 4) on the torsional 
angle <t> (torsions about the C2-N1 bond). The dependence of 
shielding constants on C2 and Ni nuclei (see Figure 4 for 
definitions) on cb is presented in Figure 5 and on H2 and H3 in 
Figure 6. It is interesting to note that when the distance between 
Oi and H2 atoms becomes minimal (</> = 120°), all the graphs 
have extrema. 

It should be noted that ab initio shielding tensor calculations 
of similar structures have become more and more popular.39 As 
a rule these calculations are performed without taking correlation 
effects into account. Since biological systems are often hydrogen-
bonded or protonated, one may expect that the effects of electron 
correlation can affect the results of NMR calculations signifi­
cantly. Besides, as noted above, the shift anisotropy is even more 
sensitive to correlation effects than the shift constant, and in 
biochemistry the interest in shift anisotropy is growing rapidly.40 

(39) Chesnut, D. B.; Phung, C. G. In Nuclear Magnetic Shielding and 
Molecular Structure; Tossell, J. A., Ed.; Kluwer Academic Publishers: 
Dordrecht, 1993; p 221. Giessner-Prettre, C; Pullman, B. Q. Rev. Biophys. 
1987, 20, 113 and references cited therein, de Dios, A. C; Pearson, J. G.; 
Oldfield, E. / . Am. Chem. Soc. 1993, 115, 9768. de Dios, A. C; Pearson, 
J. G.; Oldfield, E. Science 1993,260,1491. de Dios, A. C; Oldfield, E. Chem. 
Phys. Lett. 1993, 205, 108. 
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Figure 5. The dependences of shielding constants on C2 and Ni nuclei 
in a model dipeptide on the torsional angle 0 (torsions about the C2-Ni 
bond in Figure 4). 
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Figure 6. The dependences of shielding constants on H2 and H3 nuclei 
in a model dipeptide on the torsional angle <t> (torsions about the Cr-Ni 
bond in Figure 4). 

Therefore, since at present the SOS-DFPT approach is the easiest 
way to include correlation effects for shielding tensor calculations, 
it seems to be the most suitable current method for such theoretical 
NMR analysis in biochemistry. 

4. Conclusion 

In the present paper the sum-over-states perturbation theory 
is combined with density functional methodology and is applied 
to NMR shielding tensor calculations. Different approximations 
for the energy difference between the ground and an excited state 
were investigated. It was found that the Loc.l approximation is 
the most suitable for practical applications. For validation of 
our approach the shift tensor calculations for a number of organic 
and inorganic compounds (including transition metal complexes) 
and for a model dipeptide were presented. The results of our 
approach for both chemical shift and shift anisotropy are in good 
agreement with those of the best post-HF approaches and also 
with experimental data. The new method works very well even 
for cases when the coupled HF approach leads to very poor results 
(as in the case of the ozone molecule) and therefore it is necessary 
to take account of correlation effects. 

The new approaches lead to a very efficient procedure for NMR 
shielding tensor calculations taking into account effects of electron 

(40) Haberkorn, R. A.; Stark, R. E.; van Willigen, H.; Griffin, R. G. J. 
Am. Chem. Soc. 1981,103,2534. Oas, T. G.; Hartzell, C. J.; McMahon, T. 
J.; Drobny, G. P.; Dahlquist, F. W. J. Am. Chem. Soc. 1987, 109, 5956. 
Griffin, R. G.; Pines, A.; Pausak, S.; Waugh, J. S. J. Chem. Phys. 1975,63, 
1267. Stark, R. E.; Jelinski, L. W.; Ruben, D. J.; Torchia, D. A.; Griffin, R. 
G. J. Magn. Reson. 1983, 55, 266. 

correlation. Thetiming of this approach has an 0(N3) dependence 
on the number of basis functions instead of 0(N5) for the MP2 
approach (the fastest among correlated HF-based approaches). 
Although the approach may ultimately be supplanted by current-
density functional approaches (provided practical and efficient 
methods can be formulated), summarizing all the above we can 
conclude that the SOS-DFPT approach presented in this paper 
seems to be the most suitable method at present for theoretical 
analysis of NMR spectra in several subdisciplines of chemistry. 

We note, in closing, that SOS-DFPT has been recently applied 
to the calculation of nuclear spin-spin coupling constants70 (in 
that paper the method is referred to as Rayleigh-Schrodinger 
DFPT). The results are highly encouraging. 
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5. Appendix 1 

In contrast to the Hartree-Fock (HF) method, where the 
occupied molecular orbitals (MOs) are determined by finding 
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the single-determinant wave function which minimizes the 
expectation value of the TV-electron Hamiltonian, the Kohn-Sham 
(KS) density functional theory (DFT) method makes no use of 
the real many-electron wave function. Instead, the KS energy 
expression is a functional of the charge density and of a set of 
occupied KS orbitals, the sum of whose squares equals the charge 
density and whose original purpose was to simplify the calculation 
of kinetic energy terms. Variational minimization of the energy 
then determines the occupied MOs. From this point of view, the 
virtual MOs in both the HF and KS methods are, strictly speaking, 
uninteresting and undetermined since they do not enter into the 
original variational energy expression upon which the methods 
are based. However, the virtual MOs play an important role in 
perturbation theories. The goal of this appendix is to show how 
advantage can be taken of the arbitrariness in the definition of 
the traditional KS virtual orbitals to derive a candidate excited 
state energy expression for use with excited-state configurations 
made from frozen ground-state orbitals, consistent with the needs 
of a perturbation theoretic methodology. 

Consider a system with fractional occupation numbers np whose 
sum equals the total number of electrons N. Orbitals with p < 
N will be called "quasi-occupied" MOs while those with p> N 
will be referred to as "quasi-virtual" MOs. Note that "quasi-
virtual" orbitals may be fractionally occupied and "quasi-
occupied" orbitals may be fractionally unoccupied. The notation 
k for "quasi-occupied" and a for "quasi-virtual" MOs will be 
used. We will define the extended Kohn-Sham (EKS) expression 
for the total energy as (the definitions of Ts, J, Exc, v, p, and J;,C 
are conventional11 

E[P] = Up] + J[p] + EJp] + Jv(T) P(T) dr + £virt (20) 

where £Vin is 

*vir, = -X>*JV<A r> fi*„(r)dr (21) 
a 

and ft is a Hermitian operator. The Hermitian nature of fi allows 
us to derive one-electron equations for the "quasi-occupied" and 
"quasi-virtual" MOs by variational minimization of the EKS 
energy with fractional orbital occupation in straightforward 
analogy with the usual derivation of the KS orbital equations 
from the KS energy expression. This leads to the conventional 
KS orbital equations for "quasi-occupied" MOs, 

[ - ±V2 + „(r) + J j ^ j dr' + vjr)] *k = ek+k (22) 

and to the new EKS equations for "quasi-virtual" MOs, 

[- jv2 + v(T) + J j ^ j dr' + VJT) - ft] *. - *A (23) 
In the case of Q = constant, the KS MOs can be chosen 

orthogonal and one can introduce the projection operator 

*-2>.wj (24) 

allowing eqs 22 and 23 to be combined as 

[-^V2 + v(T) + $0^ dr' + VJT) - Mlp] *, = ^ 1 

(25) 

(fi = constant is a sufficient condition for the present purposes, 
but eq 25 holds for a wide variety of operators Q.) Following the 
KS choice of np, let us set nk = 1 for "quasi-occupied" MOs and 
/ia = O for the rest. In this case E^n vanishes and eq 22 becomes 
the conventional KS one-electron equation. Equation 25, however, 

remains intact in this limit. It is obvious that such an approach 
should lead to the same occupied MOs, the same ground-state 
electron density, and the same total energy as in the conventional 
KS method. Simultaneously, one is free to choose Q so as to shift 
the virtual MO energies up or down as desired. 

We will choose Q so that the LUMO energy is a better 
approximation to minus the electron affinity. Thus we are 
correcting, at least partially, for the derivative discontinuity in 
the exchange-correlation potential discussed by Perdew and Levy14 

which arises from the sudden shift in the LUMO with changing 
occupation number. Alternatively, the fact that the LUMO 
energy does not approximate an electron affinity can be understood 
from the point of view that, in the conventional KS method, the 
occupied and virtual MOs feel the same field of (N-1) electrons. 
Thus the LUMO in conventional theory is expected to act more 
like the orbital of an excited state than that of an (N + l)st 
electron (see an analogous discussion of the meaning of LUMO 
in the HF and IVO approaches in ref 16). Therefore one should 
not expect that the HOMO-LUMO difference will produce a 
reasonable estimate for the difference between the ionization 
potential (1(N)) and electron affinity (A(N)) of the TV-electron 
system. This contributes to the famous "gap" problem14-15 because 
the LUMO in this case is suitable not for the negative ion but 
rather for the excited state of the system. The smaller HOMO-
LUMO gap in DFT than in HF can also lead to slower convergence 
during the SCF procedure.69 

By an appropriate choice of the operator Q1 the virtual MOs 
can be shifted up in the field of N, N + 1, N + 2 or any arbitrary 
number of electrons. The appropriate choice for simulating the 
field of TV electrons is 

Q = C = 
5E„ 

Sp(T) 

SE,, 
(V+O+" 

Sp(T) 
N-O+ (26) 

where C is the derivative discontinuity constant of Perdew and 
Levy.14 In this case, the new virtual one-electron energies become 

aEKS _ JCS = e" + C (27) 

Keeping in mind that (Perdew and Levy14) 

1(N) - A(N) = ^1(TV) - e™(N) + C (28) 

(where e*+i(TV) and e$?(N) are the one-electron energies of the 
LUMO and the HOMO of the TV-electron system) and assuming 
that ejif (TV) describes with reasonable accuracy the ionization 
potential of the system, one can conclude that ef^(N) is 
suitable for the description of the electron affinity. This means 
that the LUMO is now in the field of TV electrons in contrast with 
the KS approach with a conventional local (multiplicative) 
exchange-correlation potential. Since all virtual MOs are shifted 
up in the same way (eq 25), they are in the field of TV electrons 
as well. 

With this choice of Q the energy expression (20) and orbital 
equation (25) form the basis of the EKS approach in which ground-
state occupied and virtual orbitals are determined from the orbital 
equation (25) with the Hamiltonian constructed from ground-
state occupation numbers. These ("frozen") orbitals are then to 
be used in the energy expression (20) to estimate excited-state 
energies. The negative of the energy required to excite an electron 
from occupied MO k to virtual MO a £*-.„ is given in this 
framework to second order in the change in the charge density 
as 
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-AE, 

[((l/2)7„ + (1/2) S ^ k dr) + 

((l/2)/ f l f l + ( l / 2 ) / ^ d r ) ] ( 2 9 ) 

Since the constant C shifts up the virtual MOs from the field of 
(N- 1) to the field of N electrons and the term Jak moves them 
back (see discussion concerning Jak in ref 16), we, instead of 
trying to find an approximation for C, simply delete these terms 
(C and Jak) together from eq 29 as well as the terms in the square 
brackets which look like self-interaction corrections and are 
expected to be small (and apparently are small, as judged by the 
quality of the results). This leads to our approximation 2, 

(30) AF -J^ J*+ CSV™[P\. „ rfr -^k-O = ek ~ea + J^T^Wo™ 

and gives a formal basis for our approximation 1 as well. 

6. Appendix 2 

To summarize, we would like to present the final sum-over­
states DFT perturbation theory equations for the shielding tensor 
calculations in the case of approximation Loc.l. In the SOS 
perturbation theory, the approximate perturbed many-electron 
wave function of the ground state can be expanded with respect 
to the unperturbed wave function 

_<«Slff lWI*lU> n 
%(BV) = *° + iBvY — — *° 

~a Ea ~ Ek-~, 
*L. + - (31) 

"k—a 

where W(B0) is a perturbation operator and v, u = \x,y,z) (for 
other notations see Method section). Approximating the many-
electron wave functions by appropriate Slater determinants and 
keeping in eq 31 only terms that are linear with respect to the 
external magnetic field, one can rewrite eq 31 in the form 

W - < + tB,Jjjp) *JU + ... (32) 

The coefficients $ak are determined from the expression 

-(l/2c)(a|/J*> 

0» = ek-ett-AEkta 

with 

/to = K'-**)xv}„ 

(33) 

(34) 

where Rk is the gauge origin for MO "k". 
The different approximations for A££L0 are discussed in the 

Method section. Usually we use in our applications approximation 
Loc.l. 

Malkin et al. 

A££.8 = U/3)Cxfi>W-*m P*(r) P.(r) dr (35) 

Cx = (3/2)(3/4x)'/3 (36) 

In the case of the individual gauge for localized orbitals (IGLO) 
approach,24 one can obtain (following the procedure suggested 
by Chr. van Wullen67) the analog of eq 33, 

PJP) = 

em-ett-AE^a 

Ukm (37) 

where F0 is the unperturbed DFT Hamiltonian operator, Ukm is 
a unitary matrix of a transformation from the canonical to 
localized MOs (index "m" corresponds to canonical MO, and 
indices "k", "f, and "n" correspond to localized MOs) and 

(A,)„ = -£(*,• x ?)„ (38) 

Using the coefficients $ak the calculation of the shielding tensor 
am is straightforward, 

7UV = 0UV + 0 ^C + "C 

<̂  = 2£>lO*> 

(39) 

(40) 

«5 - "2Zm<*l*2ll/> 01(Aj - Aft)J*> (41) 

<£--*£Z<*|A2,l«>ft*(«>) (42) 

with 

1 'A h01 = - - " 
" ~<\r-Rj 

ju 1 (f - Rk)(f - RN)S^-(f-RN)u(f-R11X 

" 2c2 \r-Rj 

where RN is the position of the nucleus N. 

(43) 

(44) 

file:///r-Rj

